Aller au menu Aller au contenu
Our engineering & Master degrees


School of engineering in Physics, Applied Physics, Electronics & Materials
Science

Our engineering & Master degrees
Our engineering & Master degrees

> Studies

Machine statistical Learning - 5PMSAST6

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 12.0
    • Tutorials : 0
    • Laboratory works : 8.0
    • Projects : 0
    • Internship : 0
    ECTS : 2.0

Goals

Introduction to the statistical learning theory and prediction (regression/classification)

  • Review of Models/Algorithms for supervised/unsupervised learning
  • Illustration of these algorithms on different dataset
    (Artificial Intelligence, Bioinformatics, vision, etc ...)
Contact Florent CHATELAIN

Content

  • General introduction to the statistical learning theory and prediction (regression/classification)
  • Generative approaches: Gaussian discriminant analysis, naïve Bayes hypothesis
  • Discriminative approaches: logistic regression
  • Prototype approaches: support vector machines (SVM)
  • Unsupervised classification (kmeans and mixture model)
  • Dictionnary learning / Sparse reconstruction
  • Source separation


Prerequisites

Basic elements of probability/statistics, filtering

Tests

Semester 9 - The exam is given in english only 



Rapport de BE : 25%
Examen Ecrit : 75%

Additional Information

Semester 9 - This course is given in english only EN

Curriculum->Master TSI SIGMA->Semester 9
Curriculum->SICOM->Semester 9
Curriculum->Double-Diploma SICOM-TSI SIGMA->Semester 9
Curriculum->Master->Semester 9
Curriculum->Double-Diploma Engineer/Master->Semester 9

Bibliography

  • Trevor Hastie, Robert Tibshirani et Jerome Friedman (2009), "The Elements of Statistical Learning," (2nd Edition) Springer Series in Statistics
  • Christopher M. Bishop (2006), "Pattern Recognition and Machine Learning," Springer
  • Kevin P. Murphy (2012), "Machine Learning: a Probabilistic Perspective", The MIT Press

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update January 9, 2017

Université Grenoble Alpes