Aller au menu Aller au contenu
Our engineering & Master degrees


School of engineering in Physics, Applied Physics, Electronics & Materials
Science

Our engineering & Master degrees
Our engineering & Master degrees

> Studies

Project : Digital Signal Processing (SICOM S9) - 5PMSPAP0

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 0
    • Tutorials : 0
    • Laboratory works : 0
    • Projects : 32.0
    • Internship : 0
    • Written tests : 0
    ECTS : 4.0

Goals

Assimilation of the theoretical aspects of digital signal processing (sampling, digital filtering, discrete Fourier transform and spectral analysis, etc.); Illustration of the deep learning course. Both of these objectives are fulfilled by implementing a speech / audio processing application using a variety of conventional digital signal processing techniques and / or deep neural networks. Two topics are proposed: speech denoising and voice conversion.

Contact Pascal PERRIER, Laurent GIRIN

Content

  • Design, implementation and evaluation of a speech/audio signal processing application (speech denoising or voice conversion)
  • Implementation of various conventional digital signal processing techniques and/or deep neural networks
  • Assimilation of the underlying theoretical aspects


Prerequisites
  • Fundamentals in analog and digital signal processing
  • Fundamentals in machine learning and deep learning
  • Knowledge of Matlab/Python and/or deep learning programming environments (e.g. Keras, Pytorch)

Tests

Written report describing the work done and experimental results + oral defense (30min or 45min) including questions



Session 1: Rapport de projet 50% + soutenance orale 50%
Session 2: Rapport de projet 50% + soutenance orale 50%. Un travail pratique complémentaire pourra être demandé en cas d'insuffisance du travail effectué.
Session 1 confinée: Rapport de projet 50% + soutenance orale 50%
Session 2 confinée: Rapport de projet 50% + soutenance orale 50%. Un travail pratique complémentaire pourra être demandé en cas d'insuffisance du travail effectué.

Additional Information

Curriculum->Double-Diploma Engineer/Master->Semester 9
Curriculum->Engineering degree->Semester 9

Bibliography

BELLANGER M., Traitement numérique du signal, Masson/CNET, Paris, 1990.
OPPENHEIM A.V., SHAFFER W.S., Digital Signal Processing, Prentice Hall, 1975.
ROBERT R.A., MULLIS C.T., Digital Signal Processing, Addison-Wesley Publishing Company, 1987.
Christopher Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
Yann LeCun, Yoshua Bengio and Geoffrey Hinton, Deep learning. Nature, 521(7553), 436, 2015.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update September 13, 2019

Université Grenoble Alpes