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Abstract.AWilberforce pendulum is a mechanical oscillator often used as an example for the effect of coupling.
After establishing a theoretical model of this oscillator and building a prototype, tracking algorithms have been
developed to get the position of the oscillator. These tools enable us to highlight the existence of normal modes
and determine the constants of the system. We also test different initial conditions to project the state of the
pendulum on the normal modes. At the end, we discuss the match between our model and the experimental
results. This comparison leads to possible improvements of the model and of the measurements.
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1 Introduction

The Wilberforce pendulum has been named after the
British physicist L.R. Wilberforce, who invented and
studied this pendulum at the end of the 19th century [1]. It
is a coupled mechanical oscillator composed of a mass
suspended to a spring and free to turn around the vertical
axis of the system. A sketch of the system is shown in
Figure 1. At first sight, the motion of the pendulum seems
to be disordered. However, with a closer look, we notice
that the pendulum has two motions, the translation and
the rotation, whose intensities are linked: when one is very
strong, the other is almost nonexistent. Thus, although
relatively basic and without industrial applications nowa-
days, this pendulum is an excellent example to grasp the
principle of coupling.

In 1894, Wilberforce established the first theoretical
study with experimental assessment of the movement of
the pendulum [1]. However, our work is more based on the
studies carried on by Berg and Marshall, who pointed out
and studied the eigenmodes of the system, but without
detailing how tomeasure their frequencies [2].Wewere also
inspired by Mewes in the building of our cheap prototype,
as he used a Slinky spring in its general presentation of
the oscillator [3]. There are different possible experimental
setups that have already been explored to study the motion
of a Wilberforce pendulum. A common way to measure
the vertical displacement for instance is based on an
ierre.devaux@phelma.grenoble-inp.fr

pen Access article distributed under the terms of the Creative Com
which permits unrestricted use, distribution, and reproduction
ultrasonic distance sensor [4], possibly used together with
a camera [5].

We present here the development of a convenient
toolbox named Measurements of Oscillations by Video
Extraction (MOVE) within the framework of our first year
physics project at PHELMA [6]. Since our project was
strongly time- and cost-limited, it has been decided to focus
on cross-camera tracking for the measurement of both
vertical and angular displacements. Based on MATLAB
algorithms to detect and process the movement, MOVE
enables us to perform a frequency analysis which highlights
two eigenmodes and determines their frequencies. By
comparing our theoretical model and experimental results,
possible improvements can be identified for the model and
for measurement methods.

2 Methods

2.1 Theoretical model

The first hypothesis of this model is the introduction of a
potential energy Epot of coupling between linear and
rotational movements [2,3]. The shape of this coupling
potential has been admitted considering what had already
been used in the literature. When the pendulum is rotated
by an angle u and elongated by a length z compared to its
equilibrium state, Epot writes:

Epot ¼ �euz ð1Þ
where e is called the coupling constant, of about
10�2 N rad�1.
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Fig. 1. A sketch of our prototype of theWilberforce pendulum at
its equilibrium state (a) and in motion (b).
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Then, we set the equations of motion up by using
Newton’s second law of motion and the angular momentum
theorem (along the z axis):

d2z

dt2
¼ � k

m
zðtÞ þ e

m
uðtÞ ð2Þ

d2u

dt2
¼ � k0

I
uðtÞ þ e

I
zðtÞ ð3Þ

Here, k and k0 are respectively the spring constant
(Nm�1) and the torsion constant (Nm rad�1).m and I are
the mass (kg) and moment of inertia (kgm2) of the
pendulum (both being easily adjustable in our prototype).

Those coupled equations can be solved using Laplace
transform. By imposing particular initial conditions (i.e. a
vertical and/or an angular displacement from the equilib-
rium, respectively, called z0 and u0, but no vertical or
angular speed when the motion begins), the previous
system becomes, in Laplace space:

s2ZðsÞ � sz0 � k

m
ZðsÞ þ e

m
QðsÞ ð4Þ

s2QðsÞ � su0 � k0

I
QðsÞ þ e

I
ZðsÞ ð5Þ

This polynomial system can be solved, and we obtain:

ZðsÞ ¼ 1ffiffiffiffi
D

p sðv2
u � v2

�Þ
s2 þ v2�

� sðv2
u � v2

þÞ
s2 þ v2þ

� �
z0

þ 1ffiffiffiffi
D

p s

s2 þ v2�
� s

s2 þ v2þ

� �
e
m

u0
ð6Þ
with

vz ¼
ffiffiffiffiffi
k

m

r
ð7Þ

vu ¼
ffiffiffiffi
k0

I

r
ð8Þ

v2
± ¼ 1

2
ðv2

z þ v2
uÞ±

1

2

ffiffiffiffi
D

p
ð9Þ

D ¼ ðv2
z � v2

uÞ2 þ 4
e2

mI
ð10Þ

We will suppose that the two frequencies of our system
match [2,3], i.e.

vz ¼ vu ¼ v0 ð11Þ
This assumption corresponds to the condition of

resonance [7]. It is made acceptable by a careful adjustment
of our pendulum’s moment of inertia. It allows us to highly
simplify the expression of z(t) and u(t):

zðtÞ ¼ z0
2

cosðv�tÞ þ cosðvþtÞ½ �

þ u0

2

ffiffiffiffiffi
I

m

r
cosðv�tÞ � cosðvþtÞ½ � ð12Þ

uðtÞ ¼ u0

2
cosðv�tÞ þ cosðvþtÞ½ �

þ z0
2

ffiffiffiffiffi
m

I

r
cosðv�tÞ � cosðvþtÞ½ � ð13Þ

and the frequencies are also simplified:

v2
±¼ v2

0 ±
effiffiffiffiffiffiffi
mI

p ð14Þ

Thus, themain objective of this work is to build our own
prototype, and get data about the evolution of both
altitude and deviation angle with time. Those data can
then be compared to the model to see its limits.

2.2 Experimental setup

The lower part of the pendulum is a metallic empty can. It
is pierced four times in such a way that we can cross the
two threaded rods with a 90° angle in the middle of the can
(Fig. 2). The positions of these threaded rods are fixed
thanks to nuts in the external surface of the can. In addition
to that, some extra nuts have been used in order to adjust
the moment of inertia, and stabilize the system, which is
crucial to observe the phenomenon. Indeed, it may be
necessary to modify the inertia of the system without
changing its mass, and this can be done by moving the nuts
along the rods. All the dimensions and characteristics are
indicated in Table 1.

The other important part of the pendulum is the spring.
It has to be flexible enough to be easily elongated, which
means that the spring constant must be weak (in the range
of a few N m�1). Moreover, the spring should be allowed to



Fig. 2. Views of our hand-built prototype.

Table 1. Dimensions and masses of all pendulum
components. Note that the length of the spring was
measured when it was fully compressed.

Length (cm) Diameter (cm) Mass (g)

Spring 5:0± 0:2 6:9± 0:1 156± 1

Can 10:8± 0:1 7:4± 0:1 60± 1

Rods 40:0=40:1± 0:1 0:5 92± 2

Nuts – – 47± 1

Fig. 3. Snapshots of the pendulum as captured by the two
cameras.
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turn on itself when it is vertically stretched so that the
phenomenon can be observed. An appropriate spring is a
“Slinky” spring [3] (see its dimensions in Tab. 1), and it is
precisely this kind of spring that has been used for our
prototype. One of its ends is fixed to an immobile stand
above the can, while the other end is fixed to the can with
the help of four cable ties. The spring has been shortened by
tieing some of its upper coils to fit with the height of our
experimental room.

Designed this way, our coupled system has both linear
and rotational modes, switching from one to the other. As
it moves freely, it will periodically switch between pure
translation and pure rotation through a mix of both
movements known as the “Wilberforce effect”.

We fixed the free end of the Slinky at 3.75m above the
ground. At equilibrium, the bottom of our prototype was
1.20m above the ground. To record the movement of
the pendulum, we used video capture, which offers the
advantage to be cheap and flexible without needing any
specific material. The system has been marked with three
black areas. A large black strip has been fixed around the
cylindrical part (see Fig. 2) and two black dots with
different sizes have been drawn on the lower face of the can.
One of the dots is placed at the centre of the face and the
other one close to its edge.

The experiment consists in shooting the motion along
two perpendicular directions with two cameras at the same
time (see Fig. 3). One shoots the vertical movement of the
system from the side and the other from below, targeting
the bottom of the can. It is also necessary to pay attention
to the lighting of the experiment. We add an extra light
source on the ground to get a more luminous image of the
bottom of the can.
2.3 Development of the MOVE toolbox

The basic idea is to detect the targets put on the can by
contrast with the rest of the image. For its convenience and
with a view to process each image as a matrix, we have
chosen MATLAB as our main developing tool. Positions of
the pendulum are extracted from mp4 videos, either with
480� 320 or 640� 480 resolution and acquired at the rate
of 30 fps.

Eachmovement has its own processing because we have
to extract different physical quantities with different
issues. The video in color is treated as a four-dimensional
array which is transformed into a three-dimensional array
to consider only images in shades of gray. Each frame of the
movement is a two-dimensional array.

The MOVE algorithm dedicated to linear movement is
based on the comparison between the frame processed and
an associated background [8]. The background is a dilation
of the frame calculated with five images. This is comparable
to an opening time of 1/6 s (167ms) in photography. The
comparison consists in an absolute difference between
the frame and the background. This way, every pixel of the
image that did not change is set to zero, which is equivalent
to black color. We obtain an image composed massively of
black pixels and few gray and white pixels that match with
moving areas between two frames. To isolate the relevant
object to track, we proceed to a threshold calculation by the
Otsu method [9]. Every pixel which has a value higher, or
equal, to the calculated threshold has its color code set to
255 (white). The other pixels are set to 0 (black).We finally
have a binary image of the object from which we can
extract the coordinates of the biggest area, supposed to be
the can. The vertical coordinates can be printed directly for
each frame to get linear position versus time. Yet, results
appear to be noised, which makes reconstruction from the
last evaluated position necessary. For this purpose, a box is



Fig. 4. Comparison of a raw (a) and a processed frame (b)
extracted from a rotational movement.

Fig. 5. Comparison between the geometrical angle in [�p, +p]
and the post processed angle, corresponding to our final values of u
versus time.

Fig. 6. Results of the main experiment, highlighting the
“Wilberforce effect” behaviour.
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centred on the first evaluated value of the altitude. In this
box, only the darkest pixels are selected according to an
imposed threshold. The result consists in a binary image
with few areas of different sizes. The biggest area is
expected to match with the black strip fixed around the
can. By printing the vertical position of this object for each
frame, a better estimation of the linear displacement is
finally obtained.

The MOVE algorithm dedicated to rotational move-
ment works directly with the detection of black dots under
the can. To detect only those dots, it is essential to limit the
scanned area to the disk at the bottom of the can containing
the dots.

Amask is created for each frame to select only the pixels
inside the scanned disk. Within this area, a threshold is
calculated and dots are selected accordingly, in the same
way as for linear movement. It is necessary to keep only the
two biggest objects (as the best candidates for the two
black dots) and save the coordinates of their centres
(see Fig. 4).

Measuring the angle between the line passing through
the dots and a reference horizontal line is not direct. Polar
transformation easily gives such an angle, but included in
[�p, +p]. A post-processing step based on its previous
values is necessary to rebuild a continuous curve, as shown
in Figure 5.
3 Results

3.1 Typical results

To observe the Wilberforce effect, a simple vertical
displacement of the pendulum is initially needed. So,
u0= 0 is the initial condition to be applied in this case.
Thus, the equations of the motion become:

zðtÞ ¼ z0
2
ðcosðv�tÞ þ cosðvþtÞÞ ð15Þ

uðtÞ z0
2

ffiffiffiffiffi
m

I

r
ðcosðv�tÞ � cosðvþtÞÞ ð16Þ

The most obvious behaviour that can be observed when
looking at the obtained Wilberforce effect (Fig. 6) is the
energy switch between the linear and the rotational
motions. When the amplitude of translation is at one of
its peaks, the pendulum does not spin a lot, and vice-versa.
This can be easily explained by the total energy of the
system depending on both z and u: its conservation
prevents the two motions to reach their peaks at the same
time.

Additionally, the theoretical model forecasts that the
motions of the pendulum are linked to periodic functions.
However, this is hardly noticeable in Figure 6. In order to
remove any doubt, further analysis of these curves is
mandatory.



Fig. 7. Spectral analysis of the Wilberforce effect, performed
with MATLAB FFT.

Table 2. Values of v� and v+ obtained with the spectral
analysis of the experimental curves.

v�ðrad s�1Þ vþðrad s�1Þ
Translation 1:86± 0:17 3:04± 0:17

Rotation 1:79± 0:17 2:99± 0:17

Combination 1:83± 0:12 3:02± 0:12

Fig. 8. Translation movement and associated spectral analysis
of each normal mode.
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3.2 Frequency analysis of the Wilberforce effect

According to (15) and (16), the movement of the
Wilberforce pendulum is made of the two frequencies v+
and v� which can be revealed by spectral analysis. The
MATLAB fast Fourier transform (FFT) algorithm
proposed byMATLAB [10] has been used for that purpose,
and the result is displayed in Figure 7.

This figure proves that translation and rotation
oscillate as predicted with almost the same frequencies.
Those frequencies are written down in Table 2. They
are calculated for each motion (translation and rota-
tion), and the measurement uncertainty is due to the
accuracy on the discrete frequencies. We can then
combine these two results in order to obtain more precise
values [11].

The pendulummovement is thus a superposition of two
simpler periodic motions, each one composed of only one
frequency: these are the normal modes of the Wilberforce
pendulum.

Given that z and u seem to have similar behaviours, we
will only focus on z(t) in what follows.
3.3 Isolation of the two eigenmodes

Let us rewrite equation (12):

zðtÞ¼ 1

2
z0� u0

ffiffiffiffiffi
I

m

r !
cosðvþtÞ þ 1

2
z0 þ u0

ffiffiffiffiffi
I

m

r !
cosðv�tÞ

If we want the pendulum to oscillate at the v+
(resp. v�) frequency, we have to cancel the term
z0 þ u0

ffiffiffiffiffiffiffiffiffi
I=m

p ðresp: z0 � u0
ffiffiffiffiffiffiffiffiffi
I=m

p Þ. This only depends
on the initial conditions we choose to apply on our system.
Letting the pendulum freely turn around its axis while
displacing it vertically amounts to impose z0 ¼ u0

ffiffiffiffiffiffiffiffiffi
I=m

p
.

Then z(t) and u(t) will be in phase, oscillating at the
v� frequency in a so-called “symmetric mode”. On
the contrary, if we turn the pendulum with the opposite
angle �u0 while displacing it vertically, we will have
z0 ¼ �u0

ffiffiffiffiffiffiffiffiffi
I=m

p
. Then z(t) and u(t) will be in antiphase,

oscillating at the v+ frequency in the “antisymmetric
mode”.

Hence, the initial conditions play an important role in
the behaviour of the pendulum. Although we do not
have a precise system to measure altitude and angle
deviation, we are able to project the system on its
symmetric mode because the initial conditions required
match with the natural behaviour of the spring. However,
the condition needed to observe a perfect antisymmetric
mode is more difficult to realize experimentally, which
explains that v� appears in the spectrum of this mode
(see Fig. 8).



Table 3. Corrected, measured and calculated constants of
the system.

Corrected constants
m ðgÞ 253± 5

I ðm2 gÞ 1:55± 0:03

Measured constants
k ðNm�1Þ 1:20± 0:02

v� ðrad s�1Þ 1:83± 0:12

vþ ðrad s�1Þ 3:02± 0:12

Calculated constants
k0 ðNmrad�1Þ 9:6� 10�3 ± 7� 10�4

eðNrad�1Þ 0:057± 0:008
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4 Discussion

4.1 Analysis of a few slight discrepancies

Analyzing the discrepancies between predicted and
measured oscillations supposes to first evaluate as precisely
as possible the values of all the constants.

The case of corrected constants m and I is special. The
spring is quite heavy and it has an influence on the whole
system behaviour. Thus, a correcting fraction of itsmassms
has been added to the total mass of the pendulum, and the
same to its moment of inertia Is. According to [12], this
correction depends on the ratio ms

M , where M is the mass
suspended to the spring. Here, ms

M ¼ 0:784 and we obtain
mcorr=M+0.348ms. Then, the spring constant k is
obtained by measuring the vertical elongation of the
spring when a load is added. e and k0 are deduced from
frequencies of the system, given by spectral analysis.
Indeed, (14) amounts to a system of two equations having k0

and e as unknowns (using v0=vu).
Now that all the constants of the system have been

evaluated, the experimental results can be examined.
The spectral analysis of the Wilberforce effect (Fig. 7)
shows that, unlike our predictions, the amplitudes are
not the same for the two frequencies (for both move-
ments). Two possible reasons have been investigated.
The first one is the inaccuracy of the initial conditions,
i.e. u0 is non-zero. However, the difference is too
important to be only due to this slight error. A second,
strongest approximation is the equality of the two
frequencies vz and vu in the model. Although the
pendulum has been conceived to fit this condition, it
was only on the basis of approximate values of k0, e,m and
I (as it has been discussed above).

Hence, the constants calculated in Table 3 are
dependent on these approximations. To have an idea of
the error we made, we can compare vz ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

p
and

vu ¼
ffiffiffiffiffiffiffiffiffi
k0=I

p
which are supposed to be equal. With the

constants in Table 3, we obtain: vz=2.18±0.03 rad s�1

and vu=2.49±0.09 rad s�1, which shows that these two
frequencies, supposed perfectly equal by our model, are in
reality slightly different.

To understand the source of errors which cause
different amplitudes in the spectrum (Fig. 7), we can try
to suppose u0≠ 0. For a vertical deviation of 60 cm we can
suppose u0= 0.5 rad as we know that we are very imprecise
on the initial angle deviation. Thus, we can estimate the
relative difference between the amplitudes obtained with

FFT as j2u0
ffiffiffiffiffiffiffi
I=m

p
j

z0�u0
ffiffiffiffiffiffiffi
I=m

p ¼ 14%. From Figure 7, we obtain 33% of

relative difference. Considering an initial angle different
from zero is not sufficient to explain such big discrepancies
between the amplitude of v� and v+. This is another
argument to reconsider the hypothesis of resonance
condition.

4.2 Adding friction to the model

We can see in Figure 6 that the pendulum is clearly
underdamped. This is due to the effect of air friction, which
was first neglected to simplify analytical solving.
As we have a coupled oscillator, the accurate effect is
complex because there may be two damping coefficients,
one for each type of motion. As a first attempt to
quantify friction, we will only consider a simple
exponential decrease of the linear amplitude and will
assume that frequencies remain constant. Thus, (15) is
now written:

zðtÞ ¼ z0
2
ðcosðv�tÞ þ cosðvþtÞÞe�t=t ð17Þ

To extract the constant t from the experimental data,
we use an optimization function (based on the Nelder–
Mead simplex algorithm) to minimize the residual sum of
squares (RSS) between our model and the experimental
points [13]. However, for the algorithm to return consistent
results, it was necessary to suppress the major source of
discrepancies due to the model (and independent from
friction), which is the resonance hypothesis. Thus, we
rather used a more general equation for the optimization
algorithm, where the two cosines can have different
amplitudes (which is the case when the condition of
resonance is not verified):

zðtÞ ¼ z0
2
ðA ⁢cosðv�tÞ þB ⁢ cosðvþtÞÞe�t=t ð18Þ

The results obtained this way are represented on Figure 9.
As the model is more general, it fits well with the
experimental data. But it is relevant to compare the
agreement between this model and a model as general but
without exponential decay, to evaluate the pertinence of
this damping representation. The results of those two
models are given in Table 4.

First, as one may expect, the values extracted for v�
and v+ are close to the ones obtained through the
spectral analysis (Tab. 2). The t coefficient is also of
the same order of magnitude than the one that can be
extracted from the symmetric mode (53.3 s), given that
we managed to obtain a pure underdamped sine wave
for it (see Fig. 8). The hypothesis of modelling the
effect of air friction by a mere exponential decay seems to
be a reasonable assumption, given the values of the
Pearsons R2.



Fig. 9. Experimental data and optimized fitting of z(t).

Table 4. Influence of the adding of an exponential
decrease on the fitting of an experimental curve represent-
ing the pendulummotion along z. As the values in the table
are algorithmically determined, no uncertainty is given
here.

Without decrease With decrease

v� ðrad s�1Þ 1.88 1.88
vþð rad s�1Þ 3.04 3.04
t ðsÞ – 47.2
RSS 1:88� 105 2:80� 104

Pearson’s R2 0.9579 0.9937
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4.3 Possible improvements of the measures

MOVE is a good means to quickly get results after
measurements, where manual processing would have taken
a few hours. MOVE’s time efficiency must be compared to
the accuracy of the delivered results, which can contain
some aberrant points after processing. In order to get rid of
these errors, manual processing has been preliminary
added, thus hybriding with automated methods to treat
the problematic frames. This can be considered as a
satisfying add-on to MOVE only if the number of frames to
correct is reasonably low. The first results are very
satisfying and it constitutes a good base to a possible
improvement.

Another way to avoid aberrant points is to understand
why they appear. One answer can be non-uniform lighting.
Indeed, as the pendulum moves up and down, it goes
further and closer to the light source placed on the ground.
This causes problems especially when the object is far from
the light source, and therefore far from the camera. It is
possible to correct these problems by adding extra-light
sources at different heights to light up the dots to track.

It is interesting to note that we worked with low
resolution videos (480� 320 or 640� 480) which limit
accuracy. This is a choice imposed by memory limitations
of the computers we used to process the videos (4 GB)
considering their average length (30 s). We can also deplore
the accuracy of frequency measurements which are limited
by the frame rate of the camera (30 fps). Although
significantly increasing the low budget of this simple
tabletop project, working with a slow-motion camera
would therefore be very useful.

It is hard to state the accuracy of MOVE results as we
do not have other method to measure z and u precisely. The
only thing we can say is that the signal is clear enough to
avoid noise confusion.
5 Dead ends

At first, several types of springs were tested. These springs
did not give any valuable result because of their
rigidity, height, or width. Nevertheless, the Wilberforce
behaviour is not reserved to a Slinky spring, and more
springs should be tested in order to make the different
parameters vary.

We tried to solve the system of equations with fluid
friction in order to obtain a more accurate model of the
underdamped motion. However, we did not manage to
obtain the solutions of those equations.

At the end of 3.3, we have discussed the lack of accuracy
concerning projection on anti-symmetric mode. This is a
direct consequence of imprecision on initial conditions. We
have tried to design a testing workbench where altitudes
and angles could be displayed in order to correct this
uncertainty, but in vain due to lack of time.
6 Conclusion

Coupled mechanical oscillations of the Wilberforce pendu-
lum have two normal modes which can be determined
theoretically and have been observed experimentally.

The developed algorithms within our MOVE toolbox
enable us to visualize linear and rotational motions
simultaneously and to use the obtained data to extract
information about the pendulum behaviour. In particular,
we have applied a FFT to characterize the different
behaviours of the system, which depend on the initial
conditions. We were thus able to identify the two normal
modes (symmetric and antisymmetric) and the so-called
Wilberforce effect, which is actually a mixed-eigenmode
behaviour. Some constants of the system have also been
deduced from those frequency measurements.

Two kinds of errors degrading the precision of our
results remain to be considered. First, we have chosen to
limit our study to the case of resonance. This led to
approximations in the theoretical model, like perfect
frequency match. Further work should be carried on to
study in detail the importance of this hypothesis in the
behaviour of the oscillator. Then, MOVE tools have some
limits, due to the algorithms used, their intrinsic accura-
cies, and the conditions of data acquisition (duration,
frame rate and image resolution). All these restrictions
could be reduced at reasonable cost by improvements on
both experimental setup and measurement techniques in a
future version of this project.
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