Aller au menu Aller au contenu
Our engineering & Master degrees


School of engineering in Physics, Applied Physics, Electronics & Materials
Science

Our engineering & Master degrees
Our engineering & Master degrees

> Studies

5PMSAST6 : Machine statistical Learning - WPMBDAS9

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 12.0
    • Tutorials : 0
    • Laboratory works : 12.0
    • Projects : 0
    • Internship : 0
    ECTS : 3.0

Goals

Introduction to the statistical learning theory and prediction (regression/classification)

  • Review of Models/Algorithms for supervised/unsupervised learning
  • Illustration de ces algorithmes sur différents jeux de données on different dataset
    (intelligence artificielle, Bioinformatics, vision, etc ...)

Content

  • General introduction to the statistical learning theory and prediction (regression/classification)
  • Generative approaches: Gaussian discriminant analysis, naïve Bayes hypothesis
  • Discriminative approaches: logistic regression
  • Prototype approaches: support vector machines (SVM)
  • Unsupervised classification (kmeans and mixture model)
  • Dictionnary learning / Sparse reconstruction
  • Source separation


Prerequisites

Basic elements of probability/statistics, filtering

Tests

Semester 9 - The exam is given in english only 



Rapport de BE : 50%
Examen Ecrit : 50%

Additional Information

Semester 9 - This course is given in english only EN

Curriculum->Double Diploma BIOMED - Structural->Semester 9
Curriculum->Master->Semester 9
Curriculum->Double-Diploma Engineer/Master->Semester 9
Curriculum->MASTER Nano Structural Biology->Semester 9

Bibliography

  • Trevor Hastie, Robert Tibshirani et Jerome Friedman (2009), "The Elements of Statistical Learning," (2nd Edition) Springer Series in Statistics
  • Christopher M. Bishop (2006), "Pattern Recognition and Machine Learning," Springer
  • Richard O. Duda, Peter E. Hart et David G. Stork (2001), "Pattern classification," (2nd edition) Wiley

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In

Date of update March 18, 2019

Grenoble INP Institut d'ingénierie Univ. Grenoble Alpes