Aller au menu Aller au contenu
Our engineering & Master degrees


School of engineering in Physics, Applied Physics, Electronics & Materials
Science

Our engineering & Master degrees
Our engineering & Master degrees

> Studies

5PMSEMD0 : Energy Monitoring and Diagnostics - WPMTDEM0

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 4.0
    • Tutorials : 0
    • Laboratory works : 2.0
    • Projects : 14.0
    • Internship : 0
    • Written tests : 0
    ECTS : 2.0

Goals

  • define the problem of system monitoring and diagnosis
  • complete the tools and methods necessary for this type of application
  • acquire autonomy through practical experiences
Contact Pierre GRANJON, Cornel IOANA

Content

  1. introduction to system monitoring and diagnosis (lecture)
  2. sequential change detection in signals (lecture/labworks)
    • problem statement
    • CuSum type algorithms
    • GLR type algorithms
  3. projects of system monitoring and diagnosis (project)


Prerequisites
  • basics of data science (correlation, spectral analysis, filtering, ...)
  • basics of estimation theory (maximum likelihood estimator)
  • basics of detection theory (binary hypothesis testing)

Tests

Session normale / First session
Evaluation rattrapable (ER) / ER assessment : 1 project / 1 project

Si situation 100% distancielle / If distant learning mandatory:
Evaluation rattrapable (ER) / ER assessment : 1 projet / 1 project



Moyenne de l'UE / Course Unit assessment = ER 100%
--------------------------------------------------------------------------------
Session 1 :
si cours en présence : rapport de projet (100%)
si cours à distance : rapport de projet (100%)

Session 2 :
si présentiel possible : rapport de projet (100%)
si distanciel imposé : rapport de projet (100%)

Additional Information

Curriculum->Double-Diploma Engineer/Master->Semester 9
Curriculum->Master->Semester 9

Bibliography

Detection of Abrupt Changes - Theory and Application. Michèle Basseville, Igor Nikiforov. Prentice Hall - http://people.irisa.fr/Michele.Basseville/kniga/, 1993.

Statistical inference for engineers and data scientists. Pierre Moulin, Venugopal V. Veeravalli. Cambridge University Press, 2019.

The CuSum algorithm - A small review. Pierre Granjon. Technical report - https://hal.archives-ouvertes.fr/hal-00914697, 2013

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update July 28, 2023

Contribuer





Vous voyez cet encadré, car vous avez des droits d'édition sur la page
Université Grenoble Alpes