Artificial Neural Networks - WPMGRNF7
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail
Number of hours
- Lectures : 6.0
- Tutorials : 12.0
- Laboratory works : 0
- Projects : 0
- Internship : 0
ECTS : 2.0
Goals
This course is intended to provide the necessary foundation for understanding, analyzing and designing neuromimetic networks. It covers the field of statistical learning in pattern recognition, as well as the basics of quantitative assessment of learning. An introduction will be given on deep learning as an extension of multi-layered perceptrons. This course is aimed at students from a variety of disciplines and is designed to be accessible to understanding by students who are not familiar with mathematical techniques.
Contact Marion DOHEN,
Anne GUERIN DUGUE
Content Introduction
Mathematical models: from neuron to networks
Linear models, Associative memories
Nonlinear models, Multilayer Perceptron
Introduction to Deep Learning
Self-organizing networks
Sources separation
PrerequisitesBasic knowledge of mathematics
Tests Written Exam (Exam1, Exam2)
CC: Computer exercice
SESSION 1 (présentiel) : 30% CC + 70% exam
SESSION 2 (présentiel) : 30% CC (session 1) + 70% exam
SESSION 1 (à distance) : 30% CC + 70% exam
SESSION 2 (à distance) : 30% CC (session 1) + 70% exam
Additional Information Curriculum->Master->Semester 9
Curriculum->Double-Diploma Engineer/Master->Semester 9
Bibliography Apprentissage statistique, G. Dreyfus, J.M. Martinez, M. Samuelides, M.B. Gordon, F. Badran, S. Thiria, Eyrolles, 2008
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail
Date of update April 4, 2018