Number of hours
- Lectures 10.0
- Projects 0
- Tutorials 6.0
- Internship 0
- Laboratory works 28.0
ECTS
ECTS 4.0
Goal(s)
Understand the theoretical foundations of the finite volume method applied to partial differential equations (PDEs):
Local and integral conservation of physical quantities.
Weak formulation suitable for general meshes.
Apply the finite volume method to:
The steady-state heat equation (pure diffusion problem).
The time-dependent advection-diffusion equation.
Master the discretization steps:
Mesh construction and definition of control volumes.
Approximation of diffusive fluxes (central scheme).
Treatment of advective terms (upwind, central, and stabilized schemes).
Semi-implicit time discretization.
Implement the numerical schemes:
Assembly of the associated linear system.
Treatment of boundary conditions (Dirichlet, Neumann).
Numerical solution (direct or iterative methods).
Analyze the properties of the schemes:
Consistency, stability, convergence.
Influence of mesh quality and boundary conditions.
Validate numerical results by comparison with analytical solutions or reference benchmarks.
Content(s)
Numerical Methods 2
Numerical Method projects
Prerequisites
EU Engineering sciences 1
Titre: Computational Methods for Fluid Dynamics (4th ed.)
Auteurs: J. H. Ferziger, M. Peri?
Editeur: Springer
Année: 2002
ISBN: 978-3-540-65338-0
Scheid (2017). Méthodes numériques avancées pour la résolution des EDP. Univ. de Lorraine.
https://scheid.perso.math.cnrs.fr/Enseignement/polyVF2017_18.pdf
Titre : The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab
Auteurs : F. Moukalled, L. Mangani, M. Darwish
Éditeur : Springer
Collection : Fluid Mechanics and Its Applications, Volume 113
Année de publication : 2016
ISBN : 978-3-319-16873-9