Aller au menu Aller au contenu
Our engineering & Master degrees


School of engineering in Physics, Applied Physics, Electronics & Materials
Science

Our engineering & Master degrees
Our engineering & Master degrees

> Studies

Filtering theory - 4PMSFIL9

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 14.0
    • Tutorials : 4.0
    • Laboratory works : 0
    • Projects : 0
    • Internship : 0
    ECTS : 1.5

Goals

Give basis on mean square linear filtering for the random signals. Methods description with adaptive experimental approaches

Contact Florent CHATELAIN

Content

  • 1 : Wiener filtering in the continuous representation
    • Non-causal Wiener filter
    • Causal Wiener filtering: Bode and Shannon approach
  • 2 : Discrete Wiener filtering with finite memory
    • FIR Wiener filter
    • optimal linear prediction and autoregressive models
  • 3 : Adaptive algorithms
  • 4 : Discrete Kalman filtering


Prerequisites
  • Basic signal processing course
  • Random signals and spectral analysis course
    • notions of power spectral density, Wiener-Khintchine theorem
    • non-parametric spectral estimation: periodogram
  • Notions of optimization: quadratic optimization, gradient descent algorithm

Tests

Written exam - 2h



Additional Information

Curriculum->Engineering degree->Semester 8

Bibliography

  • Detection, Estimation and Modulation Theory, Part 1, Harry L. VAN TREES Wiley, 1968
  • Optimal Filtering, Brian D. O. Anderson and John B. Moore. Dover Publications, 2005

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update March 18, 2019

Université Grenoble Alpes