Number of hours
- Lectures 0
- Projects 0
- Tutorials 16.0
- Internship 0
- Laboratory works 12.0
- Written tests 0
ECTS
ECTS 2.0
Goal(s)
“Provide a solid introduction to machine-learning fundamentals, then delve into state-of-the-art deep-learning techniques and their practical applications in medical imaging
Contact Dawood AL CHANTIContent(s)
Introduction to basic and advanced deep-learning techniques for medical-image analysis
1. Machine-Learning Fundamentals: supervised classification & regression (linear and logistic)
2. Deep Feed-Forward Networks: fully connected (multilayer perceptron) architectures
3. Convolutional Neural Networks (CNNs): feature extraction for 2-D, 3-D and multi-modal images
4. Representation Learning with Autoencoders: latent-space modeling and anomaly detection
5. Explainable AI & Uncertainty Quantification: XAI methods tailored to clinical decision-making
6. Generative Models: GANs, VAEs and hybrid approaches for data augmentation and synthesis
7. Diffusion Models: state-of-the-art denoising and high-fidelity image generation
8. MedSAM: “Segment Anything” for Healthcare: prompt-based foundation models for universal medical-image segmentation
Prerequisites
Python language MANDATORY
1st year mathematics course
Semester 9 - The exam is given in english only
Continuous assessment
BE report + MCQ + Project
En session 1
Pour le cours : Contrôle continu : QCMs + rapports
Pour le BE : contrôle continu : rapport
N1 = Note finale session 1 = 50% moyenne du CC cours + 50% note rapport de BE
En session 2
Rapport sur un mini projet
N2 = note du rapport
Les modalités sont les mêmes en présentiel et en distanciel
This course brings 3.0 ECTS to students in UE Engineering ( SàC SCOG )
Semester 9 - This course is given in english only
Deep Learning, An MIT Press book, Ian Goodfellow and Yoshua Bengio and Aaron Courville
https://www.deeplearningbook.org/