Introduction to Machine learning and Deep learning - 5PMBMLD0
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail
Number of hours
- Lectures : 0
- Tutorials : 16.0
- Laboratory works : 12.0
- Projects : 0
- Internship : 0
- Written tests : 0
ECTS : 2.0
Goals
Learn some basic algorithms for Machine Learning and deep learning
Learn to design the right Machine Learning method according to a given dataset
Learn to evaluate the performances on a Machine Learning system
Contact Alice CAPLIER
Content 0. Introduction to deep learning
1. K-NN and Bayesian classification
2. Linear regression
3. Logistic Regression
4. SVM Classifier / Principal Component Analysis / Kmeans clustering
5. Neural Networks
6. Convolutional Neural Networks
7. Generative Neural Networks
8. Recurrent Neural Networks
PrerequisitesPython language MANDATORY
1st year mathematics course
Tests Semester 9 - The exam is given in english only 
Continuous assessment
Reports + MCQ
Contrôle continue : CC
Examen écrit Session1 : DS1
Examen écrit Session 2 : DS2
N1 = Note finale session 1
N2 = Note finale session 2
En présentiel :
N1 = 60% max(MCQs) + 40% max(labsession reports)
N2 = 60% max(MCQs) + 40% max(labsession reports)
En distanciel :
N1 = 100% Writen examen
N2 = 100% Writen examen
Commentaire :
Additional Information This course brings 3.0 ECTS to students in UE Engineering ( SàC SCOG )
Semester 9 - This course is given in english only

Curriculum->Engineering degree->Semester 9
Curriculum->Double-Diploma Engineer/Master->Semester 9
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail
Date of update October 14, 2019