Phelma Formation 2022

Introduction to Machine learning and Deep learning - 5PMBMLD0

  • Number of hours

    • Lectures 0
    • Projects 0
    • Tutorials 16.0
    • Internship 0
    • Laboratory works 12.0
    • Written tests 0

    ECTS

    ECTS 2.0

Goal(s)

Learn some basic algorithms for Machine Learning and deep learning
Learn to design the right Machine Learning method according to a given dataset
Learn to evaluate the performances on a Machine Learning system

Contact Alice CAPLIER

Content(s)

0. Introduction to deep learning
1. K-NN and Bayesian classification
2. Linear regression
3. Logistic Regression
4. SVM Classifier / Principal Component Analysis / Kmeans clustering
5. Neural Networks
6. Convolutional Neural Networks
7. Generative Neural Networks
8. Recurrent Neural Networks



Prerequisites

Python language MANDATORY
1st year mathematics course

Test

Semester 9 - The exam is given in english only 

Continuous assessment
Reports + MCQ



Contrôle continue : CC
Examen écrit Session1 : DS1
Examen écrit Session 2 : DS2
N1 = Note finale session 1
N2 = Note finale session 2

En présentiel :
N1 = 60% max(MCQs) + 40% max(labsession reports)
N2 = 60% max(MCQs) + 40% max(labsession reports)

En distanciel :
N1 = 100% Writen examen
N2 = 100% Writen examen

Commentaire :

Additional Information

This course brings 3.0 ECTS to students in UE Engineering ( SàC SCOG )

Semester 9 - This course is given in english only EN
Course list
Curriculum->Engineering degree->Semester 9
Curriculum->Double-Diploma Engineer/Master->Semester 9