Phelma Formation 2022

Numerical methods : simulations - 4PMBNM36

  • Number of hours

    • Lectures 5.25
    • Projects 0
    • Tutorials 5.25
    • Internship 0
    • Laboratory works 45.5

    ECTS

    ECTS 3.0

Goal(s)

Learn the most important numerical methods to solve ordinary differential equation and partial derivative equations in order to model physical phenomenon.

Contact David JAUFFRES

Content(s)

  • Course presentation - An introduction to modelling. Learn basic programming with Matlab®. Lab sessions: 8H00.
  • Resolution of ordinary differential equations. Runge-Kutta methods. Lecture/tutorial: 1H30 - Lab sessions: 6H30.
  • Finite differences method: implicit / explicit scheme. Lecture/tutorial: 3H00 - Lab sessions: 9H00.
  • Linear system resolution (directs and iteratives methods). Lecture/tutorial: 1H30 - Lab session: 2H30.
  • Numerical integration: Newton-cotes - Gauss. Polynomial interpolation. Lecture/tutorial: 1H30 - Lab sessions: 6H30.
  • Finite elements method. Lecture/tutorial: 3H00 - Lab sessions: 13H00.


Prerequisites

Basic programming knowledge

Test

Semester 7 - The exam is given in english only 

In person!
NORMAL SESSION:
DS theory + practice

Catch-up evaluation:
DS theory + practice
Duration: 4 hours
Documents allowed: all

CATCH-UP SESSION:
theoretical + practical DS
Duration: 4 hours
Documents allowed: all

-------------------------------------------------------------------------

In distance learning!
*NORMAL SESSION: *
DS theory + practice

Catch-up evaluation:
DS theory + practice
Duration: 4 hours
Documents allowed: all

CATCH-UP SESSION:
theoretical + practical DS
Duration: 4 hours
Documents allowed: all



session 1 condition normale : note de l'examen.

session 2 condition normale : note de l'examen.

session 1 condition confinement :

session 2 condition confinement :

Additional Information

Semester 7 - This course is given in english only EN

Course list
Curriculum->Engineering degree->Semester 7

Bibliography

  • William Bober, Chi-Tay Tsai, Oren Masory : "Numerical and analytical methods with MATLAB"
  • J. Rappaz, M. Picasso : "Introduction à l’analyse numérique"
  • P. LASCAUX & R. THEODOR : "Analyse numérique appliquée à l'art de l'ingénieur", Edition Masson, 2 tomes
  • G. DHATT & G. TOUZOT : "Une présentation de la méthode des éléments finis", Edition Maloine S.A., 2ème édition 1984
  • B. LUCQUIN & O. PIRONNEAU : "Introduction au calcul scientifique", Edition Masson, 1996