Aller au menu Aller au contenu
Diversité scientifique et technologique
L'école d'ingénieurs de physique, électronique, matériaux
Diversité scientifique et technologique

> Formation

Convex Optimisation (SIGMA S9) - WPMTIPO7

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo
  • Volumes horaires

    • CM : 12.0
    • TD : 6.0
    • TP : 0
    • Projet : 0
    • Stage : 0
    Crédits ECTS : 2.0

Objectifs

Introduction aux problèmes inverses et à l'optimisation convexe

Contact Laurent CONDAT, Romain COUILLET, Ronald PHLYPO

Contenu

Ce cours traite de la formulation de problèmes de traitement d'image comme des problèmes d'optimisation convexe, de l'analyse de leurs propriété (par ex. l'existence et l'unicité de solutions), et du développement d'algorithmes efficaces pour les résoudre numériquement. Nous visons à donner aux étudiants les connaissances et compétences pour formuler des problèmes et utiliser des algorithmes appropriés pour leurs propres applications.
Syllabus:?* Optimisation convexe : existence et unicité de solutions, sous-différentielle et gradient, contraintes et fonctions indicatrices, inclusions monotones, opérateurs non expansifs et algorithmes de point fixe, dualité, opérateur proximal, algorithmes d'éclatement.

  • De l'estimation à l'optimisation : formulation d'aprioris et de contraintes, régularité et parcimonie, interprétation bayésienne.
  • Problèmes inverses : problèmes bien et mal posés, attache aux données et régularisation, étude de problèmes d'estimation de signaux et images.


Prérequis

Bases d'analyse et d'algèbre linéaire

Contrôles des connaissances

Semestre 9 - L'examen existe uniquement en anglais 



Devoir surveille * 60% + Compte rendu TP * 40%

Informations complémentaires

Semestre 9 - Le cours est donné uniquement en anglais EN

Cursus ingénieur->Master TSI SIGMA->Semestre 9
Cursus ingénieur->Double-Diplôme SICOM-TSI SIGMA->Semestre 9
Cursus ingénieur->Masters->Semestre 9
Cursus ingénieur->Double-Diplômes Ingénieur/Master->Semestre 9

Bibliographie

H. H. Bauschke and P. L. Combettes, « Convex Analysis and Monotone Operator Theory in Hilbert Spaces », 2011
N. Parikh and S. Boyd, « Proximal Algorithms », Foundations and Trends in Optimization Vol. 1, No. 3 (2013) 123–231
P. L. Combettes and J.-C. Pesquet, « Proximal splitting methods in Signal Processing », chapitre de « Fixed-point algorithms for inverse problems in science and engineering », p. 185-212, 2011.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

mise à jour le 9 janvier 2017

Grenoble INP Institut d'ingénierie Univ. Grenoble Alpes